Year 4 Physics Department Assessment Non-Accredited Program

Student Learning Outcomes

1. Demonstrate the ability to apply fundamental, overarching themes in physics, including conservation laws, symmetry, the particulate nature of matter, waves, interactions, and fields, and systems, models and their limitations.

2. Demonstrate competency in applying basic laws of physics in classical and quantum mechanics, electricity and magnetism, thermodynamics and statistical mechanics and special relativity, and the applications of these laws in areas such as optics, computational physics, and astronomy.

3. Represent basic physics concepts in multiple ways, including mathematically (including through estimations), conceptually, verbally, pictorially, computationally, by simulation, and experimentally.

4. Demonstrate knowledge of how basic physics concepts are applied in modern technology and apply this knowledge to the solution of applied problems.

5. Solve complex, ambiguous problems in real-world contexts.

6. Show how results obtained relate to the original problem, determine follow-up investigations, and place the results in a larger perspective.

7. Demonstrate instrumentation competency: competency in basic experimental technologies, including vacuum, electronics, optics, sensors, and data acquisition equipment. This includes basic experimental instrumentation abilities, such as knowing equipment limitations; understanding and using manuals and specifications; building, assembling, integrating, operating, troubleshooting, and repairing equipment; establishing interfaces between apparatus and computers; and calibrating laboratory instrumentation and equipment.

8. Demonstrate software competency: competency in learning and using industry-standard computational, design, analysis, and simulation software, and documenting the results obtained from a computation or design.

9. Demonstrate data analytics competency: competency in analyzing data, including with statistical and uncertainty analysis; distinguishing between models; and presenting those results with appropriate tables and charts.

10. Communicate with many different audiences from many different cultures and scientific backgrounds, understand each audience and its needs, and make the communication relevant and maximally impactful for that audience.

11. Obtain information and evaluate its accuracy and relevance through reading (print and online), listening, and discussing.

12. Articulate one's own state of understanding and be persuasive in communicating the worth of one's own ideas and those of others.

13. Communicate in writing about scientific and technical concepts concisely and completely, and revise writing to achieve grammatically-correct and logically-constructed arguments.

14. Organize and communicate ideas using words, mathematical equations, tables, graphs, pictures, animations, diagrams, and other visualization tools.

15. Work collegially and collaboratively in diverse, interdisciplinary teams both as a leader and as a member in pursuing a common goal.

16. Obtain knowledge about existing technology resources relevant for the task at hand. For example: How is the technology made? How does it work? What does it cost? Who tests it? What industries are affected by it? Where are the centers of these industries located? Where can the computational resources needed for the task be found?

17. Demonstrate familiarity with basic workplace concepts. Concepts such as program and project management, including planning, scheduling, tracking progress, adapting, and working within constraints, quality assessment and assurance, and working with and enhancing the safety culture in the workplace.

18. Display awareness of regional and national career opportunities and pathways for physics graduates.

19. Demonstrate critical professional and life skills, including completing work on time, optimism, realism, time management, responsibility, respect, commitment, perseverance, independence, resourcefulness, integrity, ethical behavior, and cultural and social competence

Area	SLO*	ULG**	Measures/Instruments	Results and
				Evaluations
Physics Specific Skills	1. Demonstrate the ability to apply fundamental, overarching themes in physics, including conservation laws, symmetry, the particulate nature of matter, waves, interactions, and fields, and systems, models and their limitations.	C, Q, W	Major Field Test (given prior to leaving EIU) or possibly some other exam of general physics knowledge	Such assessments are no longer in the budget.
	2. Demonstrate competency in applying basic laws of physics in classical and quantum mechanics, electricity and magnetism, thermodynamics and statistical	C, Q, W	Grades in PHY 4470, PHY 4750, PHY 4855, PHY 4865, PHY 4320, and PHY 4100	The GPA for all of these courses is 3.007 for the period of evaluation. In general the material to be evaluated does seem to be learned at

	mechanics and special relativity, and the applications of these laws in areas such as optics, computational physics, and astronomy.			an appropriate level.
	3. Represent basic physics concepts in multiple ways, including mathematically (including through estimations), conceptually, verbally, pictorially, computationally, by simulation, and experimentally.	C, Q, W	Grades in PHY 1371, PHY 1372, PHY 3150, PHY 4711, PHY 4712	The experimental portion of these courses show growth as the GPAs go from 3.229 for 1371 and 1372 to 3.200 for 3150 to 3.661 for 4711 and 4712. This shows clear growth in the concepts and experimental knowledge.
	4. Demonstrate knowledge of how basic physics concepts are applied in modern technology and apply this knowledge to the solution of applied problems.	C, Q, W	Grades in PHY 3150, PHY 4713	The GPA of 3.200 for 3150 demonstrates knowledge in this area. And the GPA of 3.875 for 4713 indicates growth and maturity.
Scientific Technical Skills	5. Solve complex, ambiguous problems in real- world contexts.	C, S, R	Grades in PHY 4713, PHY 2601, PHY 4601	End of semester research talks have demonstrated

			a general ability to
			nrohlem
			solvo in
			research
			contexts.
6. Show how	C, Q	Grades in PHY 4713,	The average
results obtained		PHY 2601, PHY	grade in these
relate to the		4601	courses is
original problem,			3.883 which
determine follow-			indicates that
up investigations,			our faculty
and place the			have faith in
results in a larger			the student's
perspective.			abilities in
Perspectives			this area.
7. Demonstrate	NA	Grades in PHY 3150	The GPA for
instrumentation	1111	PHY 4470 PHV	these courses
competency:		4711 PHY 4712	is 3 451
competency in		PHV 1713	which
basic		1111 7/15	indicates that
ovnorimontal			mulcales mai
experimental			students are
technologies,			learning
including			experimental
vacuum,			techniques
electronics,			and
optics, sensors,			technologies.
and data			
acquisition			
equipment. This			
includes basic			
experimental			
instrumentation			
abilities, such as			
knowing			
equipment			
limitations:			
understanding			
and using			
manuals and			
specifications.			
building			
assembling			
integrating			
integrating,			
operating,			
troubleshooting,			

and repairing equipment; establishing interfaces between apparatus and computers; and calibrating laboratory instrumentation and equipment.			
8. Demonstrate software competency: competency in learning and using industry- standard computational, design, analysis, and simulation software, and documenting the results obtained from a computation or design.	C, Q, W	Grades in PHY 3270, PHY 4320	The GPA for these courses is 3.108 and indicates that students are competent in the software that is currently in the instruction system.
9. Demonstrate data analytics competency: competency in analyzing data, including with statistical and uncertainty analysis; distinguishing between models; and presenting those results with appropriate tables and charts.	C, Q, W	Grades in PHY 1372, PHY 3150, PHY 4711, PHY 4712	Grades for these courses show a 3.466 GPA indicating that error analysis is taught and understood by the students.

Communications Skills	10. Communicate	W, S,	EWP Report	EWP reports
	with many	R	1	indicate that
	different			our students
	audiences from			write and
	many different			communicate
	cultures and			at a level that
	scientific			is above the
	backgrounds.			College
	understand each			average.
	audience and its			
	needs and make			
	the			
	communication			
	relevant and			
	maximally			
	impactful for that			
	audience			
	11 Obtain	WS	Professor's	Students are
	information and	•••,5	Evaluation of PHV	exposed to
	evaluate its		1001	strategies for
	accuracy and		1001	improving
	relevance through			learning in
	reading (print and			this course
	onling (print and			Critical
	oninie), insteining,			Thinking og
	and discussing.			minking as
				well as
				analyzing of
				word
				problems are
				addressed in
	10 4 4 1 4	C		this course.
	12. Articulate	2	Speaking Report	This report is
	one's own state			problematic
	ot understanding			because of
	and be persuasive			small number
	in communicating			statistics the
	the worth of			score on this
	one's own ideas			is at the top
	and those of			and
	others.			demonstrates
				competence
				but maybe
				not for the

				whole program.
	13. Communicate in writing about scientific and technical concepts concisely and completely, and revise writing to achieve grammatically- correct and logically- constructed arguments.	C, W	Grades in PHY 3410, PHY 3420, PHY 4855, PHY 4865	The GPA for these courses is 3.158 which indicates that students are able to achieve good levels of writing in technical and scientific modes.
	14. Organize and communicate ideas using words, mathematical equations, tables, graphs, pictures, animations, diagrams, and other visualization tools.	W, Q	Grades in PHY 4000 and Speaking Report	Students demonstrate growth in their ability to organize and present material in Powerpoint. Faculty are satisfied with the current results. The Speaking Report corroborates this evaluation.
Professional/Workplace Skills	15. Work collegially and collaboratively in diverse, interdisciplinary teams both as a leader and as a member in pursuing a common goal.	R	Exit Interview	Exit Interviews were not done due to budget constraints.

16. Obtain	S, W	Grades in PHY 3150,	These
knowledge about		PHY 4713	discussions
existing			are a part of
technology			the final
resources relevant			project for
for the task at			these courses.
hand. For			It is not
example: How is			necessarily
the technology			reflected in
made? How does			the grades
it work? What			because the
does it cost? Who			course covers
tests it? What			so much
industries are			more.
affected by it?			However,
Where are the			instructors
centers of these			report that the
industries			students do
located? Where			get exposure
can the			to all of these
computational			concepts
resources needed			throughout
for the task be			the courses.
found?			
17. Demonstrate	R	Alumni Survey	Expense of
familiarity with			Alumni
basic workplace			Survey is not
concepts.			in the budget.
Concepts such as			
program and			
project			
management,			
including			
planning,			
scheduling,			
tracking progress,			
adapting, and			
working within			
constraints,			
<i>.</i>			
quality			
quality assessment and			
quality assessment and assurance, and			
quality assessment and assurance, and working with and			
quality assessment and assurance, and working with and enhancing the			
quality assessment and assurance, and working with and enhancing the safety culture in			

	18. Display	NA	Exit Interview,	Expense of
	awareness of		Alumni Survey	Alumni
	regional and			Survey is not
	national career			in the budget.
	opportunities and			C
	pathways for			
	physics			
	graduates.			
	19. Demonstrate	R	Exit Interview,	Expense of
	critical		Alumni Survey	Alumni
	professional and			Survey is not
	life skills,			in the budget.
	including			
	completing work			
	on time,			
	optimism,			
	realism, time			
	management,			
	responsibility,			
	respect,			
	commitment,			
	perseverance,			
	independence,			
	resourcefulness,			
	integrity, ethical			
	behavior, and			
	cultural and			
	social			
	competence			
* Student Learning				
Objectives				
** University Learning	C = Critical			
Goals -	Thinking			
	W = Writing and			
	Critical Reading			
	S = Speaking and			
	Listening			
	O = Ouantitative			
	Reasoning			
	R = Responsible			
	Citizenship			
	NA = Not			
	Applicable			

Improvements and Changes Based on Assessment

- Provide a short summary (1-2 paragraphs or bullets) of any curricular actions (revisions, additions, and so on) that were approved over the past two years as a result of reflecting on the student learning outcomes data. Are there any additional future changes, revisions, or interventions proposed or still pending?
 - a. Implemented a new course as an elective for upper level students. PHY 4780, Plasma Physics was taught for the first time in Spring 2023. The course will add to student's knowledge of Electricity and Magnetism as well as some Mathematical Methods (a course that was deleted from the curriculum in our streamlining of the program).
 - b. Utilized PHY 1001 to be more career oriented. We go over resume writing, professional letter writing, and career ideas now. We continue to expound the benefits of studying in technical fields as well as hints for better classroom performance.
 - c. Implemented a recitation section in our introductory majors Physics course in the spring of 2023. This is to supplement topics from the usual lecture and give the students further experience in problem solving. It does work to give students additional problem solving skills.
 - d. We updated our software by purchasing COMSOL which is a simulation package for modeling physical systems. This is both to give computational physics students better software for modeling and to give them additional up to date software to work with. It further enhances our abilities for mentored research because COMSOL is currently widely used.
- 2. Please provide a brief description or bulleted list of any improvements (or declines) observed/measured in student learning. Be sure to mention any intervention made that has not yet resulted in student improvement (if applicable).
 - a. Students seem to have been hindered in their education from the COVID years. We find that
 incoming students are not as prepared as in the past. Since 2022 the Department has
 recorded about 40 incoming students but the introductory majors class had 15 students.
 More than half of the incoming majors were not prepared to take calculus based Physics.
 - b. In general GPA numbers have been going down over the past few years. We believe that this is a side effect of COVID education.
 - c. One intervention is the recitation section mentioned above.

3. Using the form below, please document annual faculty and committee engagement with the assessment process (such as the review of outcomes data, revisions/updates to assessment plan, and reaffirmation of SLOs).

History of Annual Review			
Date of Annual Individuals/Groups who Results of the Review (i.e., reference proposed			
Review	Reviewed Plan	changes from #1 above, revised SLOs, etc)	
9/1/23	Whole Department	Recitation Section proposed for General Physics I.	
9/9/24	Whole Department	Continue current activities and evaluate outcomes later.	

Dean Review & Feedback

The Department of Physics 2-year assessment report is comprehensive and measures 19 distinctive student learning outcomes, most of which are aligned with EIU's undergraduate learning goals. The program assesses SLOs using multiple data points including a major field test, exit interviews, an alumni survey, speaking and critical thinking analyses, and course grades. Assessment results were shared with the faculty in fall 2023 & 2024 and led to several curricular and programmatic changes including the implementation of a recitation section in the introductory majors course and the purchase of a simulation software package to assist with modeling physical systems. While assessment results over the last few years indicate that students are less prepared to take calculus-based Physics coursework, the department has responded in part by implementing the recitation section noted above. While the department has made positive progress in their assessment enterprise, I urge the Physics faculty to consider standardized methods in addition to course grades to assess several key SLOs in their program. Perhaps this could be accomplished by expanding the scope of the exit interviews and/or alumni survey.

el.

<u>11/26/24</u>

Dean or designee

Date